Fusion of the Dhfr/Mtx and IR/MAR Gene Amplification Methods Produces a Rapid and Efficient Method for Stable Recombinant Protein Production
نویسندگان
چکیده
Amplification of the dihydrofolate reductase gene (Dhfr) by methotrexate (Mtx) exposure is commonly used for recombinant protein expression in Chinese hamster ovary (CHO) cells. However, this method is both time- and labor-intensive, and the high-producing cells that are generated are frequently unstable in culture. Another gene amplification method is based on using a plasmid bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR), which result in the spontaneous initiation of gene amplification in transfected cells. The IR/MAR and Dhfr/Mtx methods of gene amplification are based on entirely different principles. In this study, we combine these two methods to yield a novel method, termed the IR/MAR-Dhfr fusion method, which was used to express three proteins, the Fc receptor, GFP, and recombinant antibody. The fusion method resulted in a dramatic increase in expression of all three proteins in two CHO sub-lines, DXB-11, and DG44. The IR/MAR-Dhfr fusion amplified the genes rapidly and efficiently, and produced larger amounts of antibody than the Dhfr/Mtx or IR/MAR methods alone. While the amplified structure produced by the Dhfr/Mtx method was highly unstable, and the antibody production rate rapidly decreased with the culture time of the cells, the IR/MAR-Dhfr fusion method resulted in stable amplification and generated clonal cells that produced large amounts of antibody protein over a long period of time. In summary, the novel IR/MAR-Dhfr fusion method enables isolation of stable cells that produce larger amounts of a target recombinant protein more rapidly and easily than either the Dhfr/Mtx or IR/MAR methods alone.
منابع مشابه
Application of the novel and convenient IR/MAR gene amplification technology to the production of recombinant protein pharmaceuticals
Amplification of DHFR gene in CHO cells by selection of MTx has been widely applied to the establishment of stable cell lines that efficiently produce recombinant protein pharmaceuticals. However, the DHFR/MTx technology was highly time-and labor-consuming. On the other hand, we had found that a plasmid bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR) ...
متن کاملHow a Replication Origin and Matrix Attachment Region Accelerate Gene Amplification under Replication Stress in Mammalian Cells
The gene amplification plays a critical role in the malignant transformation of mammalian cells. The most widespread method for amplifying a target gene in cell culture is the use of methotrexate (Mtx) treatment to amplify dihydrofolate reductase (Dhfr). Whereas, we found that a plasmid bearing both a mammalian origin of replication (initiation region; IR) and a matrix attachment region (MAR) w...
متن کاملEfficient Recombinant Production in Mammalian Cells Using a Novel IR/MAR Gene Amplification Method
We previously found that plasmids bearing a mammalian replication initiation region (IR) and a nuclear matrix attachment region (MAR) efficiently initiate gene amplification and spontaneously increase their copy numbers in animal cells. In this study, this novel method was applied to the establishment of cells with high recombinant antibody production. The level of recombinant antibody expressi...
متن کاملTransient Expression of Foot and Mouth Disease Virus (FMDV) Coat Protein in Tobacco (Nicotiana tabacom) via Agroinfiltration
Background: Transient and stable transformation of host plants are the common techniques to produce transgenic plants. However, the main drawback of stable transformation is the fact that it takes quite a long time to produce a transgenic line. While, transient gene expression is a quick method to produce recombinant proteins in plants. Objective: The main goal of the present study was to eva...
متن کاملFusion of Clostridium perfringens type D and B epsilon and beta toxin genes and it’s cloning in E. coli
Designing and producing a proper fusion construction is the most important problem of producing large quantities of a properly folded functional protein. This construction should have all necessary components of a real gene. A good designed fusion gene construction could be cloned into a good and suitable host. Clostridium perfringens is an important pathogen of humans and livestock and produce...
متن کامل